Achieving High Throughput Sequencing with Graphics Processing Units

نویسندگان

  • Su Chen
  • Chaochao Zhang
  • Feng Shen
  • Ling Bai
  • Hai Jiang
  • Damir Herman
چکیده

High throughput sequencing has become a powerful technique for genome analysis after this concept was raised in recent years. Currently, there is a huge demand from patients that have genetic diseases which cannot be satisfied due to the limitation of computation power. Though several softwares are developed using currently most efficient algorithm to deal with various types of sequencing problems, the CPU seems to be too expensive to process endless data economically because CPUs are not designed adaptive for data parallel problem. The latest Fermi architecture released by NVIDIA provides considerable number of streaming processors, bigger size of register file and 1 MB cache, which makes it very competitive for data parallel processing. This paper tries a simple sequence alignment method on GPU and compared the real world performance between CPU and GPU. Experiment shows that GPU may have a good potential with similar problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space

When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU) hardware.We followed this approach in implementing a read a...

متن کامل

A scalable and portable framework for massively parallel variable selection in genetic association studies

UNLABELLED The deluge of data emerging from high-throughput sequencing technologies poses large analytical challenges when testing for association to disease. We introduce a scalable framework for variable selection, implemented in C++ and OpenCL, that fits regularized regression across multiple Graphics Processing Units. Open source code and documentation can be found at a Google Code reposito...

متن کامل

An Efficient Block Cipher Implementation on Many-Core Graphics Processing Units

This paper presents a study on a high-performance design for a block cipher algorithm implemented on modern many-core graphics processing units (GPUs). The recent emergence of VLSI technology makes it feasible to fabricate multiple processing cores on a single chip and enables general-purpose computation on a GPU (GPGPU). The GPU strategy offers significant performance improvements for all-purp...

متن کامل

CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform

MOTIVATION New high-throughput sequencing technologies have promoted the production of short reads with dramatically low unit cost. The explosive growth of short read datasets poses a challenge to the mapping of short reads to reference genomes, such as the human genome, in terms of alignment quality and execution speed. RESULTS We present CUSHAW, a parallelized short read aligner based on th...

متن کامل

Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)

Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011